Types of Forces

<u>FORCE</u> - any push or pull. These can have any direction.

Example: Steve pushed the wheelbarrow to the left, with a force of 12 N.

Direction: Any (tells you in the problem)

FBD:

FBD (Free Body Diagram) - diagram showing an object and all of the forces acting on it, The forces should be labeled and point in the appropriate direction.

<u>GRAVITY</u> - force of attraction between any two objects. On Earth the force of gravity *always points straight down* (toward the center of the Earth).

Direction: Straight down

Equation: $F_{gravity} = mass * Acceleration due to gravity$ $F_g = m g$ $g = 10 \text{ m/s}^2$

FBD

NORMAL FORCE - Force due to a surface pushing on, or holding up an object. There is no equation, but if the surface is flat (like a table) then the normal force is usually equal to the force of gravity.

Direction: perpendicular to the surface

Equation: None, use Newton's second law to find $F_{\mbox{\tiny N}}$

FBD -

<u>**Tension**</u> - Force in a rope or string.

Direction: Points in the direction of the rope AWAY from the object Equation: None, use Newton's 2nd Law FBD:

Friction- Contact force that prevents slipping. Keep an eye out for problems that say 'frictionless'.Direction: Parallel to a surface, opposite the direction of motion.Equation: $F_{friction} = coefficient of firction * Normal Force$ FBD:

<u>Spring Force</u> - Force caused by a spring.

Direction: Along the length of the spring Equation: F = kx FBD: